
Fitting a spatial coalescent model

David Welch, Hongbin Guo, Stéphane Guindon
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Phylogenetic problem:

Given sequence data D, want to infer genealogy g and any
parameters θ controlling mutation or populations processes.

P(g , θ|D) ∝ P(D|g , θ)P(g |θ)P(θ)

Most common model for genealogy, P(g |θ), is Kingman’s
coalescent.

Phylogeographic problem:

As well as D have L, location of each sequence.
Now want to infer g , θ and µ, parameters controlling spatial
movement.

P(g , θ, µ|D, L) ∝ P(D|g , θ)P(g , L|θ, µ)P(θ, µ)



Existing models

1. Structured coalescent, fixed number of panmictic demes

P(g , θ|D, L) ∝ P(D|g , θ)P(g , L|θ, µ)P(θ, µ)

= P(D|g , θ)

∫
Lancestral

P(g , L, Lancestral |θ, µ) dLancestralP(θ, µ)

2. Finite demes but genealogy process does not a prior depend
on location process

P(g , θ|D, L) ∝ P(D, L|g , θ, µ)P(g |θ)P(θ, µ)

3. Continuous space with Brownian motion down lineages,
separate from genealogy process. Based on Wright-Malecot
forward model where position of off-spring is normally
distributed with centre at parent.



Problems with existing models

I Deme structure often not natural or known

I Even when known, number of demes must be small for
structured coalescent (3-4 max?)

I A priori assumption of neutrality of location process
unsatisfactory

I Wright-Malecot model does not produce uniform distribution
across space



Clumping in Wright-Malecot model
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Continuous landscape coalescent — forward process

Variation of the spatial Λ-Fleming-Viot process of Etheridge, Barton,

Véber et al.

I reproduction/death/migration events no longer centred on
individuals

I Start with individuals spread uniformly across landscape

I Reproduction and extinction events (REXs) occur at
exponential intervals with rate λ

I at a REX, a centre c is chosen uniformly across landscape

I each individual at l dies with some probability according to its
distance from the centre, u(l , c) = µK (l , c , θ)

I new individuals are born at location l ′ are rate according to
distance from centre, so at rate ∝ u(l ′, c)dl ′

I All newly born individuals are the off-spring of a single
individual at k who was alive before event and is chosen
according to distance from centre v(k, c) ∝ K (l , c , θ)



Continuous landscape coalescent

The reverse process follows the ancestry of a sample of lineages.
Suppose a single lineage is at location l .

I REX events still occur at rate λ

I Lineage at location l hit by REX with centre c with probability
u(l , c), jumps to new location l ′ according to pdf v(l ′, c)

I Lineages coalesce when both hit by same REX event, move to
same new location.



Inference

Want the posterior P(λ, µ, θ, g |D, L)
To calculate, need to augment the space to include full history:

P(λ, µ, θ, g |D, L) =

∫
Lanc ,M

P(λ, µ, θ, Lanc ,M|D, L) dLanc dM.

Approximate this integral using Bayes theorem and Markov chain
Monte Carlo sampling.



Choose a more interpretable parametrisation

Hard to interpret λ, µ, θ except in terms of model.
Instead, use parameters common from Wright-Malecot model:
neighbourhood size

N =
2

µ

diffusion rate
σ2 = 4θ4λπµ.

and θ.

Derivation is based on relationship between coalescent rate and
effective population size Ne .



Simulations

I Landscape is 10× 10

I Ne ∼ U([100, 5000])

I N|Ne ∼ U([Ne × 10−3,Ne × 10−2]).

I θ ∼ U([1.5, 4]).

I 50 samples taken uniformly from 10 triangular regions
comprising an average 17% of landscape

I Sequences of length 500bp simulated under Kimura model
over tree.

I 500 repetitions



Median and 95% credible interval estimates for N
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Comparison of Bayesian estimation of N with fixation
index based estimation method
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Median and 95% credible interval estimates for σ
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Median estimates for σ
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Summary

I It may be a feasible alternative to structured coalescent or
other approximate models when doing inference

I But will need to generalise: to allow changing landscapes and
non-constant populations

I Paper and software will be available soon


